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A description is given of the high Reynolds number (R 9 1) laminar fluid motion 
in the neighbourhood of the trailing edge of a flat plate undergoing small ampli- 
tude sinusoidal oscillations in a uniform supersonic stream. It is shown that for 
oscillations of frequency w* = O(R)) and amplitude h* = O(R-t) a rational 
description of the flow at the trailing edge is based on a ‘triple-deck’ structure, 
which is a familiar feature of steady trailing-edge flows. The theory may be 
extended in a straightforward manner to include slow oscillations of the plate, 
and it is shown in general that the occurrence of separation a t  the trailing edge 
is dependent upon the magnitude of the product of the frequency and amplitude 
of oscillation, and that if w* < O(R4) then the flow is maintained right up to the 
trailing edge provided that h*w* < R-4. The precise condition for the occurrence 
of separation is found for frequencies in the range w* < R). 

1. Introduction 
Simultaneous investigations by Stewartson (1969) and Messiter (1970) have 

shown that in the limit as the Reynolds number becomes large the laminar flow 
at the trailing edge of a flat plate aligned with a uniform stream has a three- 
layered or ‘triple-deck’ structure which extends a distance O(R-%) around the 
trailing edge. Here R is a representative Reynolds number for the flow based on 
the plate length b .  Extensive work on the trailing-edge region has followed the 
original Stewartson-Messiter theory. The so-called ‘lower-deck’ equations have 
been solved numerically for the case of an incompressible mainstream by both 
Van de Vooren & Veldman (1975) and Burggraf & Jobe (1974) and for a super- 
sonic mainstream by the present author (1974a). These investigations provide a 
quantitative evaluation of the leading-order correction to the Blasius drag on 
the plate. Brown & Stewartson (1970) considered the case of a flat plate a t  
incidence and used the triple-deck theory to provide an estimate of the viscous 
correction to the circulation determined by the Kutta condition. It was shown 
that the critical angle of incidence for the occurrence of separation at the 
trailing edge was O(R*) for an incompressible mainstream and O(R-f) for a 
supersonic mainstream. A quantitative evaluation of the critical angle in the 
latter case was made by Daniels (19743, hereafter referred to as I). 

Brown & Daniels (1975, hereafter referred to as 11) extended the previous 
triple-deck investigations to consider an unsteady trailing-edge flow. A descrip- 
tion was given of the incompressible fluid motion in the neighbourhood of the 
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trailing edge of a flat plate performing high frequency, small amplitude oscilla- 
tions in a uniform stream. Both pitching and plunging motions were considered 
and it was shown that for oscillations of frequency w* = O(Rt) and amplitude 
h* = O(R-A) a rational description of the flow at the trailing edge is based on 
a complicated subdivision of the boundary layer above the plate. This consisted 
essentially of a triple-deck structure but also introduced the notion of a region, 
termed the foredeck, of height O(R-41) and streamwise extent O(R-iZ). In  all, 
five distinct regions were distinguished at  the trailing edge. In  four of these, 
asymptotic analytic solutions were found, whilst in the fifth, the lower deck of 
the triple deck, an approximate linearized solution yielded an estimate for the 
time-dependent viscous correction to the circulation determined by the Kutta 
condition. 

The present paper extends the work of I1 to the case of a supersonic mainstream 
and also to slow oscillations of the plate ; the latter is found to be a straightforward 
extension of the high frequency case because of the absence of the foredeck region 
which occurs in the incompressible problem. Initially, however, we consider the 
supersonic analogue of 11. A flat plate of length I is held fixed a t  its mid-point and 
performs sinusoidal oscillations of small amplitude A* and high frequency w* 
about a line parallel to the direction of the stream at infinity. The justification 
for considering a flat-plate aerofoil, so that the flow remains unseparated until 
it enters the trailing-edge region, involves restrictions on the thickness of the 
aerofoil which are discussed by Brown & Stewartson (1970). The parameters of 
the problem are the Reynolds number R = Uml/v,, where U, is the mainstream 
speed and Y, is the kinematic viscosity at infinity, the non-dimensional ampli- 
tude & = h*/l and the frequency parameter x" = o*l/U,. The Reynolds number 
is assumed to be large and the orders of magnitude of the other two parameters 
are chosen in terms of R. The flow is to enter a triple deck of streamwise extent 
O(R-81) centred on the trailing edge which consists of an upper deck of height 
O(R-81), a main deck of height O(R-81) and a lower deck of height O(R-81). 
Upstream of the triple deck the flow will be a perturbation to that of Blasius and 
since w* is large there will be a Stokes layer in the neighbourhood of the wall of 
thickness O([v,/w*]8). As in 11, we choose the order of magnitude of f l  such that 
the Stokes layer and the lower deck are of the same thickness: thus 8 = O(Ri) .  
I f  the order of magnitude of x" is smaller than R* the flow is essentially a perturba- 
tion of that for a steady aerofoil at incidence and is discussed in $6. If it  is larger, 
then it is probable that the triple-layered flow near the trailing edge is destroyed 
by the rapid oscillation. Once the order of magnitude of f i  has been determined, 
that of E is implied by the size of the adverse pressure gradient induced at the 
trailing edge by the oscillation, which should be of the same order of magnitude 
as the favourable pressure gradient induced by the triple deck. It emerges that 
for this to hold in the supersonic case we must have 6 = O(R-81). 

The next three sections are concerned with the three major flow regions, After 
the application of the method of Fourier transforms by von KbmAn (1935) the 
development of a general linearized theory of unsteady supersonic flow advanced 
considerably with the work of Gunn (1947), Miles (1949) and Stewartson (1950), 
and the results for the inviscid flow used in $ 2  have been proved using a variety 
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of different methods. A general account of this work is given by Temple (1953). 
The boundary layer set up along the plate is described in § 3 and is shown to be 
a time-dependent perturbation of a basic Blasius flow (in suitably chosen co- 
ordinates), the velocity profile being accompanied by temperature and density 
profiles which also contain time-dependent perturbations. Final adjustment of 
both the velocity and temperature profiles to their specified values on the plate 
occurs through an inner Stokes layer. 

In contrast to the incompressible flow of 11, the flow just upstream of the 
trailing edge in the supersonic case is quite regular, with the result that the 
region termed the foredeck plays no role in the present study and the boundary- 
layer flow matches with a conventional triple-deck region at the trailing edge, 
which is the subject of $4. The triple deck smoothes out the discontinuity which 
exists between the values of the pressure above and below the plate as the trailing 
edge is approached. For a frequency of oscillation w* of O(RB), as in the incom- 
pressible case, this is achieved, as described above, if we assume that the ampli- 
tude of oscillation h* is O(R-*l). Smaller values of h* will merely result in a 
perturbation to the solution for a steady aligned plate described by Daniels 
(1974a) whilst it may be supposed that for larger values of h* the flow will have 
separated before the trailing edge is reached. Certain properties of the lower- 
deck solution are derived in $5. The form of the wake as it  leaves the trailing-edge 
region may be derived from an asymptotic solution of the lower-deck equations 
for large values of the scaled streamwise co-ordinate. Whilst a full computational 
solution of the equations is not attempted, a linearized theory yields an approxi- 
mate solution for the antisymmetric part of the pressure and the symmetric 
part of the skin friction. 

In the last section we consider the modifications required to include the entire 
frequency range 0 < w* < O(R*). It is shown that the trailing-edge flow structure 
is basically unchanged and that if w* < Ra the problem effectively reduces to 
that of a steady plate at incidence. It may be deduced that the occurrence of 
separation at the trailing edge is dependent upon the magnitude of the product 
of the amplitude and frequency of oscillation and that if h*w* < R-4 the flow is 
maintained right up to the trailing edge. For frequencies w* < R* we may use 
the results for a steady plate at incidence (I) to provide a precise condition for the 
occurrence of separation at the trailing edge. 

2. The external inviscid flow 
Consider a flat plate of length I with mid-point at the origin 0 of a set of 

Cartesian co-ordinates (x*, y*) fixed in space. The plate, which is maintained at 
a constant temperature T,, oscillates in a compressible fluid of density p and 
temperature T which has uniform velocity U, and Mach number M, ( > 1) a t  
infinity. At any time t* the equation of the plate is 

y* = - 2h*l-lx* ei(1)'t' ( - < x* < 81). ( 2 . 1 )  

I f  terms O(h*2) are neglected then the value of the perturbation potential 
$*(x*,y*,t*) on the upper surface of the plate is a special case of one of the 
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classical results of unsteady linearized supersonic flow theory obtained by 
Possio (1937), Hod (1944), Miles (1947) and others (see Temple 1953): 

The pressure and slip velocity on the upper surface may then be determined by 
use of Bernoulli's equation as 

where pm and prn are the unperturbed values of the pressure and density in the 
external flow and (u*, v*) are the Cartesian velocity components. 

The next four sections will be concerned with large values of the parameter w* 
and so we express (2.2) in the simplified asymptotic form 

1 
x [MOD cos(X* - in) +isin ( X *  -@)I + 0 ( )) o*[x* + 411 

(w*+oo, - 81 < X* < @), (2.4) 

whereX* = w*M,(x* + 4Z)/Um(N% - 1)t. Theexpansion clearlyfailsat theleading 
edge, where x*+&1= O(w*-l), but is valid along the remainder of the upper 
surface of the plate. The corresponding pressure and slip velocity are now 
determined to first order from (2.3) as 

At this stage we specify the orders of magnitude of the two parameters w* and 
h* in terms of the Reynolds number 

R = €-a = umyv,. (2-6) 
Here we introduce the small parameter E for convenience. First, the order of 
magnitude of o* is chosen such that the inner Stokes layer is of the same thick- 
ness as the lower deck of the triple deck at the trailing edge and thus, exactly 
as in the incompressible problem, we set w* = 0(c2), The critical order of 
magnitude of the amplitude h* is now determined from the requirement that the 
pressure perturbation (2.5) should match with the order-s2 perturbation, which 
is a fundamental property of the triple-deck formulation, a t  the trailing edge. 
Thus h* = 0(e4Z) and the parameters w* and h* are replaced by the corresponding 
non-dimensional scaled parameters 8, and ho defined by 

h* = s4h01, f? = o*l/Um = So/@, (2.7) 
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where h, and So are assumed to be independent of the Reynolds number. The 
formulae (2.5) may now be expressed in the form 

where t = u*t*, and the corresponding results for the lower surface of the plate 
are obtained simply by changing the sign of h,,. The steady function D,(x*/Z) 
must now be included since the flow due to the displacement thickness of the 
boundary layer on a finite plate is O(&) (Kuo 1953). 

Finally, the orders of magnitude of the total lift L and total moment M on 
the oscillating plate may be considered. The leading term (2.8) in the pressure 
gives no contribution to the overall lift on the plate, the first contribution instead 
arising from the second term in the asymptotic expansion (2.4), which implies 
that L = O ( 8 ) .  However, the contribution of (2.8) to the moment about the 
mid-point of the plate is non-zero, so that the leading term is O(e2) and an explicit 
expression for M is possible : 

3. The perturbed boundary-layer flow 
It is convenient to study the boundary-layer flow with respect to axes fixed 

in the plate with origin at the trailing edge and we therefore use co-ordinates 
(g, g) and velocity components (ii, v") defined by 

(3.1) 
u*-&u*eiwot' = U,(ii+i&flije"), Lu*eiw***+v* = U,(@-i@?[Z+i]eit). (3.2) 

Although the Navier-Stokes equations are modified by additional terms to 
account for the rotation (see Shen & Crimi 1965) these are of sufficiently low 
order not to affect the solution considered here. Thus the leading terms in the 
boundary-layer flow set up by the external flow (2.8) satisfy the equations 

X*/Z - 4 = g + Lij eit, y*/~ = ij - E ( z  + 4) eit, 

a a 
€8 at ax aY1 
5 g+_; (pi i )  +- (pw1) = 0, 

FT = P COT,, 
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p is the coefficient of viscosity, y is the ratio of specific heats and i~ is the Prandtl 
number; the boundary-layer variables y, and v1 are defined as 

y1 = q e 4 ,  v1 = q e 4 .  (3.8) 

A full account of the derivation of these compressible boundary-layer equations 
may be found in Stewartson (1964, p. 15). Equation (3.5) combines the yl- 
momentum equation (which infers that f5 is independent of y1 across the layer) 
and the equation of state. Equation (3 .6)  is the energy equation. The system must 
be completed by an equation relating ,LA and T and here, for simplicity, we assume 
that Chapman’s viscosity law holds: 

PIPa = C(T/T,), (3 .9)  

where C is a constant determined from the ‘correct’ viscosity law and the 
conditions at the plate (see also Stewartson 1964). Here we shall assume a linear 
law and thus take C = ,u,T,/,u,T,. This formulation provides a description of 
the flow which is accurate near the plate (but may be less accurate a t  the outer 
edge of the boundary layer). 

The chief advantage of the assumption (3 .9)  is that the momentum equation 
(3.3) is rendered formally independent of T (or p )  to leading order [see (3.13) 
below] and thus the velocity profile in the layer is determined independently of 
the energy equation. Once the velocity profile has been obtained, solution of 
(3.6) provides the temperature and density profiles across the layer. The system 
(3.3)-(3.9) is simplified using a generalization of the Dorodnitsyn-Howarth 
transformation due to Stewartson (1951) and Moore (1951), which dehes  the 
new co-ordinate 3, and the stream function $ by the relations 

(3.10) 

The momentum and energy equations then become 

( 3 . 1 1 )  
xo a2$ a$ az? a2$ a$ 2 ~ 2 i p , h , s ~  eit a3$ 

+------ - +C-- 
€2 ay, at ayl azay, ay; a2 PMa as -- 

and 
A!__+ S aT ------ a$ aT a$aT B M , T ( Y - ~ ) ~ , ~ ~ ( ~ + ~ ) , ~ ~  

€2 at agl az az agl P a  

= C,+CT,M2,(y- l )  a2T (g)’, (3.12) 
8% 

where terms O(e4) and O(e2) respectively have been neglected and the Prandtl 
number has been taken as unity. 

The solution of (3.11) which matches with the external velocity (2.8) as 

(3.13) 
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where [ = ijI/[2C(1+2)]4, f(6) is the familiar Blasius function, satisfying 

(3.14) 

and the steady term D,(53, yl) corresponds to the displacement term D,(z*/Z). 
The function To([) is the leading term in the asymptotic expansion of the solution 
of (3.12) as s+O: 

T ( f ,  91, t )  = To(C) + s2T,(2, &,!t) + ... . (3.15) 

Substitution of the two expansions (3.13) and (3.15) into (3.12) yields the 
equation for To as 

Tb +,f!l’h + [(y - 1) M t  T,,] ( f”)2 = 0, (3.16) 

‘.I- f”+f = 0, f(0) =f” (O)  = 0, f’(C0) = 
2-*f”(O) = A = 0-3321, 

with boundary conditions 
G(0) = T,, T,(oo) = Tm. (3.17) 

Equation (3.16) may be integrated directly t o  give the solution for To (Crocco 
1946): 

To = T m  + S(7- 1) 1M2,(f’-f2) T,, + (T, - !I’m) (1 -f’). (3.18) 

The solution for T, is obtained from the balance between the first and fourth 
terms on the left-hand side of (3.12), which gives 

It is clear from the solutions (3.13) and (3.19) that the boundary conditions 
G(Z,O, t )  = 0 and T(Z,O, t )  = T, are not satisfied by the time-dependent terms 
as yl + 0. It is therefore necessary to include within the conventional boundary 
layer an inner Stokes layer which reduces both the velocity and temperature 
profiles to their specified values at  the plate. As for the incompressible problem, 
the appropriate order-one variable in this region is y2 = y&, and the asymptotic 
expansions for the velocity and temperature are 

’‘my2 ) + €4 ( - ”‘ ( + ul(z, y2) e.)+ . . . , (3.20) ’ = ‘ [ [C(l +Z)]ST, 12C2(1 + 2 ) 2  T,, 

2 
T=T,+s( hY2 

[C( 1 + Z)]* 

The equation for the unknown function u1 is obtained by substitution into (3.3) as 

(3.22) 

The boundary conditions for u1 are that ul(2,0) = 0 and, in order to match with 
the outer solution (3.13), 

(3.23) 
35-2 
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The appropriate solution is thus 

(3.24) 

where i4 = (1 +i)/,/2. The function T, satisfies a similar second-order equation 
whose solution which matches with the inner limit of (3.15) as y1 --j. 0 and satisfies 
the boundary condition on the plate, T'(53, 0)  = 0, is 

4. The triple deck 
The results of the previous section clearly indicate that the boundary layer 

on the plate approaches the trailing edge (2 = 0 - ) in a perfectly regular manner. 
In  incompressible flow, the foredeck results from the critical balance between 
the sizes of the operators a/at* and a/ax* a t  the trailing edge, but in the present 
problem we always have 8/at* $ a/ax* outside the triple deck as z* - +,I -+ 0 - . The 
result is that the foredeck region of the incompressible problem has no counter- 
part in supersonic flow and the boundary-layer flow of Q 3 matches with a con- 
ventional triple deck at the trailing edge in which the order-one streamwise 
variable is x2 = 2/63. The leading-order pressure variation in the triple deck is 
forced a t  x2 = -m by the time-dependent perturbation (2.8); however the time- 
dependent parts of the velocity and temperature in the boundary-layer flow 
match with lower-order terms in the triple-deck expansions and have no effect 
upon the fundamental problem at the trailing edge. 

Despite the time dependence, the analytic structure of the triple deck is 
basically that of Stewartson & Williams (1969). In  the main deck, where y1 = O( l), 
we write 

.ii = u.(yl) + 6um(x2, ~ 1 %  t )  + * - - 9  

6 = €215,(X2, y1, t )  + . . . , 
P = RB(Y1) + ~P,(xz,Y19 t )  + * * 

(4.2) 

(4.3) 

(4.4) 
where U'(yl) = f'(Jl/(2C)*) and RB(yl) = pm Tm[To(TjJ(2C)h)]-1 are respectively 
the generalized Blasius velocity profile and the density profile evaluated at  the 
trailing edge. Since time derivatives do not enter the equations until terms of 
order lower than those shown explicitly in (4.1)-(4.4) are considered, the results 
of Stewartson & Williams are immediately applicable and we have 

= -Am(x2, t )  auB/d~1, vm = 'B(Y~) ["m(x2, t)l/ax2, P ~ Z  = A,(x2, t )  "B/'Y~, 

(4.5) 
where the match with the boundary-layer flow upstream given by (3.13), (3.15) 
and (2.8) implies that 

A,-+O, pm+ -(ihoSo/Mm)eit (x,+--co). ( 4 4  

p3 - (a2Am/ax$) y1 = O(') (!/I * O0). (4.7) 

A further result we shall require is that 
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In  the upper deck, where yo = g/e* = O(l ) ,  we write 

$5 = s2pu+ ..., Q = 1+s2uu+ ..., v" = €%,+ ... . (4.8) 
The function pU then satisfies the Prandtl-Glauert equation in the variables 
x,  and yo, with solution 

(4.9) 
From (4.1) and (4.77, the match with the main deck as yo+O and y L + a  then 
provides the relations 

(4.10) 

which combine after one integration to provide the basio relation between p ,  

PU(X2, Yo, t )  = Pu(P2 -Yo(= - I)% t ) .  

pu(X2, t )  = pm(22, t ) ,  - (HE - 114 a2iU/ax2 = - a2Am/ax;, 

and A,: 
(4.11) 

where the time-dependent constant of integration follows from the upstream 
boundary conditions (4.6). 

In the lower deck, yz = y /Js  = O(1) and we have 

@ = €21)1(X2,t)+ ..., (4.12) 

Q = SUl(X,, y2, t )  + . . *, (4.13) 

v" = e3q(x2,y2,t)+ ..., (4.14) 

T = Tw+eq(x2, ~ 2 ,  t )  + *.-, p = P W + ~ P ~ ( X ~ , ~ Z I ~ ,  t )  + - (4.15) 

It may be noted from (4.15) that the leading terms in the temperature and 
density expansions are in fact equal to their respective values at the plate 
throughout the lower deck, despite the fact that the plate terminates at 2, = 0. 
This is because the leading terms do not violate the downstream condition of 
continuous flow across the wake. The match with the main deck of the triple 
deck now provides the relations 

with the result that the fundamental problem for the lower deck for a supersonic 
high frequency oscillating plate is to solve the equations 

au a~ au ap a% au av 
at ax ay ax a p  ax ay 

S-+u-+v- = --+- -+- = 0, (4.17) 

p p ( x , t )  = aA,/ax-ihSeit, ( y  > 0), (4.18) 
pB(x, t )  = - adB/ax + ih8 eit, (4.19) 

u+IyI, p,+-ihSett, p,+ihSeit (x+--co), (4.20) 

u = w = O  on y = O  (z<O), (4.21) 

u-Y + - A p ( X ,  t )  (y -t +a), (4.22) 

+Y3+AB(X,  t ,  (y+- a), (4.23) 

pr = pB, u, v smooth for all y ( x  > 0), (4.24) 

p + o  (2-tm). (4.25) 

( y  < 0), 
where P ( X , t )  = { 
subject to the boundary conditions 
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The final condition (4.25) is needed to ensure a match with the solution in the 
wake, as for the steady supersonic problems of Daniels (1974a, b).  The para- 
meters A, C, M, and TWITm have been eliminated by means of the transformations 

(4.26) 

p ,  = C*h.t(M: - l)-*p, uZ = CgAf(M2, - 1)-* (T,/T,))%, 
x2 = CtAf(M: - l)-j(Tw/T!)Px, 

A, = C%Af(M2, - I)-* (T,/T,)QA, 
ho = M,A-l(T,/Tm) (M2, - 1)dh .  

vZ = Cjh%(MZ, - I)+ (TW/Ta)*v, 
y2 = C%A-B(M% - 1)-H (T,lT,,)%y, 
So = C-*A*(TW/T,)-1(i@, - I))#, 

At this point it is noted that, as for the incompressible problem, the trailing- 
edge theory for a plate oscillating in the plunging mode follows immediately 
from that for the pitching mode with an appropriate relation between the 
amplitudes H* and h* (respectively). For the supersonic plunging mode we write 
the equation of the plate as 

It then follows that the pressure on the upper surface is given by 

(4.28) 

where H*/l = 8 = e4H0 and So is defined by (2.7); transformation to co-ordinates 
on the plate is achieved by use of equations (8.5) and (8.6) of I1 with @replaced 
by 8. Comparison of the above result with the corresponding formula (2.8) 
evaluated at x* = $1 (the trailing edge) shows that all the results of this section 
apply to the plunging mode (4.27) if h, is replaced by H,. Thus, in contrast to the 
incompressible result, the trailing-edge effect of a supersonic pitching motion is 
equivalent to that of a plunging motion of equal (instead of halved) amplitude. 
As far as overall comparisons are concerned, an increase in lift and decrease in 
moment for the plunging motion similar to those in incompressible flow are 
found, for it follows from (4.28) that M = O ( 8 )  whilst the total lift L on the 
plate is given by 

-=- 2E2HoX~ sin @*t* + o(s3) (E  + 0). (4.29) L 
p , m  Jf, 

5. The lower-deck solution 
We now consider the solution of the fundamental problem (4.17)-(4.25). 

Asymptotically, the most interesting part of the flow is where x+co for this 
shows the form assumed by the wake vortex sheet as it leaves the trailing-edge 
region. A simple transformation is sufficient to show that, as in the incom- 
pressible problem, the lower deck merges into the inner form of Goldstein's (1930) 
wake solution, which has an appropriate time-dependent displacement of the 
centre-line. We replace the variables y and v by new variables ?j and 5 defined by 

(&la, 6 )  B = y- e(x, $1, = v - s aelat - u aelax. 

Choice of the function O(x, t )  as 
e(x, t )  = ihSx eit 
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now reduces the conditions (4.18), (4.19), (4.22) and (4.23) to the single equation 

u- I I 1 +  - ~ ~ p ( t ) a t - t [ A * ( o , t ) - A , [ o , t ) l  

-g[A,(O,t)+A,(O,t)lgnI ([I1 +a, 3 > O ) ,  (5.3) 

whilst substitution of (5.1) into (4.17) leaves both equations unchanged, except 
that y and v are replaced by and 3 respectively. The leading term of the asymp- 
totic solution of these equations as x+co which satisfies the condition (5.3) is 

u = dfi(7) + ..., p = - 0 . 2 9 7 d  + ..., (5.4) 
where f = q/x%. The functionfo is identical with the leading term of the inner 
solution of the Goldstein wake and satisfies 

The asymptotic solution of the energy equation in the lower deck for 
the corresponding result 

yields 

T = T,+€{C+ht(M~-l)-+(T,/T,)~x~fi(i-i)+ ...) (x+-co). (5.6) 

As far as the properties of the wake are concerned, (5.la) indicates that it 
emerges from the triple-deck region where 2 = O(e3) with a linear displacement 
given by 

and thus has a phase lag of in relative to the oscillation of the plate. Further, 
(5.1b) indicates that the wake as a whole (which has a thickness of order €4) 

oscillates from side to side with velocity 

in this region. 
We now consider the possibility of a full computational solution of the problem 

(4.17)-(4.25), based on the methods used for the steady problem of I. Pirst, it is 
noted that the solution must display a periodic symmetry of the form 

(5.9) I u(x, YY t )  = u@, -Y, t + n), PT(X,  t )  = Pi?(% t + 4, 
V@Y YY t )  = -v(x, -Y, t+n), 

so that the domain of the problem may be be reduced to y 
conditions (4.19), (4.23) and (4.24) by 

0 only by replacing 

U 

P@,t)  = P ( x , t + r ) ,  au j (XYO,t) =:a;] ( x , O , t + n )  (3 > 0 )  (5.10) 

u+y, p +  -ihSeit (x-t  -a); (5.11) 

- 
aY 

and (4.20) by 
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the terms pB and A,  are no longer required. To reduce the problem still further, 
the time dependence may be eliminated completely if we represent the real 
solutions for the pressure p and stream function $ by the Fourier series 

(5.12) 1 
m 

$($, Y, t )  = &O(X, 9) + Z (a,(%, Y) ~ 0 s  & + bn(x, Y) sin&) 

p(x, t) = Qco(x) + x (c,(x) cosnt+d,(x) sinnt), 

(Y 2 01, 
n=l 

OD 

a= 1 

where the coefficients a,, b,, c, and d,  are real. The initial conditions (5.11), for 
instance, then become 

(x+-co), (5.13) 
&aa,/ay-ty; aa,/ay,ab,/ay+O (n = 1, ...) 
co,cl+O, d,+hS; cn,dn+O (n = 2, ...) 

and we have a downstream marching problem of the type described in I for each 
of the functions a, (n = 0,1, ...) and b, (n = 1,2,  ...) and the corresponding 
pressure coefficients c, and a,. 

Substitution of (5.12) into (4.17) shows that the equations for the a, and b, are 
coupled and so would require a simultaneous solution at each downstream step; 
and the initial values of each c, and an would in theory have to be adjusted using 
a shooting technique to satisfy the downstream condition (4.25). This procedure 
might be tractable for a very high truncation of the Fourier series (5.12), and 
certainly for small values of h a linearized solution could be computed by following 
a procedure outlined by the present author (1974~) .  However, we can find an 
analytic solution for the antisymmetric part of the pressure and the symmetric 
part of the skin friction using an approximate linearized theory based on the 
same assumptions as those of I1 for the incompressible case. Thus we introduce 
the complex perturbation quantities WT - WB, VT + VB and PT - P', where 

(5.14) I WT-WB = (wT-wB)eity % = UT = Y + W T  (y > o), 
u = ?hug = Y + W B  (y < O ) ,  Y = IyI (x 6 O ) ,  

pT -pB = (PT - PB) eit, WT + VB = (VT + VB) eit, 

on the assumption that for small values of h we have wT, w, g 1 and the uniform 
shear represents a good first approximation to the flow upstream of the trailing 
edge. Substitution of the forms (5.14) into the lower-deck equations (4.17) and 
neglect of terms nonlinear in the perturbation quantities then result in the 
equations 

We now seek a solution of the form 

+(PT - PB) = - ihS + ihS eKx, 

&(wT-wB) = -ih8eK"P'( Y ) ,  & ( V T + + B ) = i h S ~ e " ~ ~ ( Y ) ,  
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where K is an undetermined complex constant with ReK > 0. The form of the 
antisymmetric part of the pressure is chosen to satisfy the upstream boundary 
condition $(PT - PB) +- - ih8 (x+ - co) and the trailing-edge condition 

The equation for P is 

with boundary conditions 

4 d O )  = &?(O). 

-P'"-K = -(i8+YK)P'+KP, (6.17) 

F(0)  = p'(0) = 0, P'(co) = l / K .  (5.18) 

The first two boundary conditions and (5.17) are satisfied if 

(6.19) 

where the value of the cube root is specified if we assume that - km < arg K c an. 
To apply the third boundary condition the further approximation that S 1 is 
made, as in the incompressible case. We may then replace the Airy functions by 
their asymptotic forms and perform the integration of (5.19) to obtain the simple 
expression 

K2 = is (5.20) 

for the constant K. The real solutions for the antisymmetric part of the pressure 
and the symmetric part of the skin friction then become 

*(pT -pB) = - h8[ex sin (X -t- t )  + sin t ] ,  ) 

where X = (&S)+x. Alternatively, in view of the:property (5.9), 
either side of the plate may be written as 

pr(x,  t )  = p,(x) - hS[ex sin (X + t )  + sin t] ,  

pB(x, t )  = p8@) + hS[ex sin ( X  + t )  +sin t], 

(5.21) 

the pressures on 

(6.22) 

where now the unknown steady symmetric part p&), which represents a correc- 
tion to the basic linear shear solution for h = 0 and which is assumed small for 
the purposes of the linearization (5.14), must be included. 

6. Low frequency oscillation and separation at the trailing edge 
The solution of the preceding sections has dealt with the specific case for which 

the frequency of oscillation w*  is O(c2)  and the amplitude of oscillation Fv* is 
O(e4). This choice of the orders of magnitude of the two parameters of the problem 
was shown in 8 2 to produce a pressure perturbation in the boundary layer which 
exactly matches the perturbation which occurs in the triple-deck formulation 
at the trailing edge. Moreover, the leading-order perturbations to the velocity 
components in the triple deck decay exponentially as x2 +- - co and the velocity 
perturbations in the boundary layer, which merely force lower-order terms in the 
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triple-deck expansions, do not affect the fundamental problem for the lower 
deck formulated in 6 4. This property permits a straightforward extension of the 
theory for w* - e-2 to  cover the trailing-edge flow for the complete range 
0 < w* < O(e-2), without the necessity of providing a detailed solution for the 
perturbed boundary-layer flow on the plate. 

From the above discussion it is clear that the dominant factor which determines 
the trailing-edge flow is the size of the inviscid pressure on the surface of the 
plate as x*-@+O-. This may be determined for any w* from the formulae 
(2.2) and (2.3). If@* is large we may use the simplified form (2.5), 

whilst if w* is of order one we must use the complete formula (2.2), which gives 

However, whichever form is used, the pressure just upstream of the trailing edge is 
always O(h*w*) and certainly for the entire range 0 Q w* < O ( c 2 )  the flow a t  the 
trailing edge is described by a triple-deck structure provided that h*w* = 0 (e2). 
This last condition should not be regarded as a restriction, but as an indication 
of the critical range of the parameters: if h*w* < O(e2) then the leading-order 
problem at the trailing edge is simply that for a steady aligned plate described 
in Daniels (1974a), whilst if h*w* > O(e2) then it may be assumed that the flow 
on the plate separates before the trailing edge is reached. 

To fix the ideas suggested in the preceding paragraph we now consider in a 
little more detail the problem of a slowly oscillating plate, for which w* N 1 and 
h* N €2, and show how it may be placed in context with both the steady inclined 
configuration of I and the high frequency problem considered in $62-5. The 
external inviscid flow on the upper surface of the plate is determined from (2.2) 
and (2.3) and has the form 

where we now replace (2.7) by the scalings 

h* = @hol, s" = w*1/UW = So. (6.5) 
The complicated functions P, and V,  may be written explicitly in an integral 
form similar to (2.2) but their precise behaviour will be of no concern. The major 
requirement from P, will be its limiting form as x* - frZ --f 0 - , and this is precisely 
the function P(Ma,, 8) given by (6.3). 
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The external flow (6.4) produces a boundary-layer flow on the plate where 
yl = O(1) which is that of Blasius together with an order-@ time-dependent 
perturbation. The perturbation to the temperature profile is also O(s2). The time- 
dependent parts vary across the entire layer since for w* = O( 1) the inner layer 
described in § 3 effectively becomes of the same thickness as the boundary layer. 
We do not attempt a solution for the perturbation in the boundary layer, but 
note that, since the function U, is quite regular as x* - &l -f 0 - , the correction 
to the Blasius profile just upstream of the triple deck at the trailing edge is O(s2) 
and thus does not affect the leading-order velocity terms in the lower and main 
decks. 

In  the upper deck we have u, -+ h,, U,(M,, I,&) eit as x2 -+ - co, but the solution 
is still given by (4.9) and the fundamental problem in the lower deck may be 
stated as follows: solve 

au au ap a2u au av 
ax ay ax ay2’ ax ay 

u--+v- =-- +- -+ - -0 ,  

where p,(X,t) = aAT/aX+hP(i&,8)eit (Y ’ 0) (6.7) 
pB(x, t )  = - aAB/ax - h~(iK,, 8) eit (y < 0) (6.8) 

p(x, t )  = { 
and 

.-+:I y 1, ppT+ hP(M,,  s”) eit, pB+ - hP(M,, 8) eit (XJ - a), (6 .9)  

u = v = O  on y = O  ( x < O ) ,  (6.10) 

u - y + - A T ( ~ , t )  (y- tc~),  u + y + A B ( ~ , t )  (Y+- .o) ,  (6.11) 

p ,  = p , ,  u,w smooth for all y (x > 0) ,  p-+O (x-fm). (6.12) 

Here the quantities x ,  y, u, v, p and A are defined by the transformations (4.26) 
and in addition we wrke 

h, = Cm(2W2, - 1)Qi (6.13) 

A comparison of the above system with the lower-deck problem (2.13)-(2.20) 
of I now shows that, at  any given time t ,  the solution for a slowly oscillating 
plate is given by that for a steady inclined plate at an angle of incidence a* if we 
define the scaled angle of incidence a by the relation 

a = Re (hP(M,, f l )  eit}. (6.14) 

We may now deduce the condition for the occurrence of separation at the 
trailing edge of the slowly oscillating plate, for the results of I indicate that, as 
the value of a is increased, separation first occurs when a = a, = 2.0502. Separa- 
tion therefore occurs at  the trailing edge of the slowly oscillating plate if 

(6.15) 

a complicated condition which depends on the non-dimensional amplitude of 
oscillation h*/l, the frequency parameter B, the Mach number M, and the 
Reynolds number R. The simplest effect to consider is that of the amplitude: for 
a given Reynolds number R, Mach number M, and frequency parameter 8, 
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separation first occurs a t  the trailing edge as the amplitude is increased when 
w*t* = t = t,, [any value of t  which produces the maximum of (6.14)] and 

where the function P is given by (6.3). 
For both large and small values of the frequency w*,  the separation law (6.15) 

takes a particularly simple form. As #-+a we have P N -i&2Mam - l)4/Mm, so 
that separation occurs, initially, at the times t* = n/2w* and 37r/2w* (as the 
plate passes through its mean position) if 

(6.17) 

The effect of an increase in frequency is thus to reduce the minimum amplitude 
at which separation occurs at the trailing edge. As 8'30 we have P-+ 2 and (6.15) 
implies that separation occurs at t* = 0 if 

(6.18) 

This merely restates the case ofa steady inclined plate since the angle of incidence 
of an oscillating plate in its extreme position is 2h*/Z and the right-hand side of 
(6.18) is precisely the trailing-edge stall angle of I. 

The separation law (6.15) holds for all h* and w* provided that h* = O(e2) and 
w* = O(l), and we have seen that in the limit as w*+O we recover the case of 
a steady inclined plate. We now consider the opposite limit, in which w* JCO and 
the oscillation of the plate becomes more rapid. Consider any w* in the range 
1 < w* g c2. The time-dependent perturbations to the external inviscid pressure 
and slip velocity on the plate are O(h*w*) and O(h*) respectively and produce 
perturbations of the same magnitude in the boundary layer and an inner Stokes 
layer of thickness O(@w*-&); the latter is required to reduce the fluid velocity to 
zero a t  the plate. To obtain the critical problem in which separation may occur 
at the trailing edge, the order of magnitude of h* must be such that the inviscid 
pressure just upstream of the trailing edge, as given by (6.1), forces the leading- 
order pressure perturbation in the triple deck. Thus we assume = O(e20*-1). 
It is noted that for the specified range of w* the thickness of the Stokes layer is 
less than that of the main deck and greater than that of the lower deck. However, 
this 'mismatch' of the regions at the trailing edge can affect only the lower-order 
terms in the triple-deck expansions and the fundamental problem at the trailing 
edge remains that of (6.6)-(6.12) with the function P replaced by its asymptotic 
form P = - is"(M2, - l)i/Nm. The separation law is thus given by (6.17). 

The above arguments fail when the oscillation is so rapid that w* = O(e-2), 
which results in the problem considered in §$2-5. A comparison of (4.17) and 
(6.6) shows that the feature distinguishing the two regimes is the appearance of 
the time derivative in the lower-deck equation (4.17). Clearly the critical order 
of magnitude of the product h*w* for the occurrence of separation remains €2 

but the precise law is no longer given by (6.17) and cannot be inferred from the 
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results for a steady inclined plate. Presumably the new law specifies the minimum 
scaled amplitude h for separation, as a function of the scaled frequency parameter 
8, but a determination of the value of this function for even one value of 8 would 
require a full numerical solution of (4.17)-(4.25) and this has not been attempted. 

In the incompressible case, the trailing-edge stall angle has not been determined 
numerically for a steady inclined plate, although Brown & Stewartson (1970) 
make an estimate of its value. It is expected that the arguments of this section 
have a direct analogue in the incompressible problem. A more detailed investiga- 
tion of the flow is required, however, before this can be confirmed since the velocity 
components in the boundary layer must presumably be matched to the leading- 
order terms in the triple deck through a foredeck of streamwise length O(o*-l). 
Further investigation is also required to consider the range w* > c2; in this case 
the time derivative in the lower-deck equation (4.17) becomes dominant and 
it is possible that the triple-deck structure at the trailing edge is destroyed by the 
rapid oscillation. 

The author gratefully acknowledges help and encouragement from Dr S. N. 
Brown and Professor K. Stewartson and also the financial support of the Science 
Research Council. 
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